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The radiation properties of partially immersed three-dimensional bodies, in time- 
periodic motion, are examined in the short-wave asymptotic limit E -+ 0,  where B 

is a non-dimensional wavelength. The method of matched expansions is used 
to specify an outer approximation, away from the surface wave region, and an 
inner approximation where the potential, in the vicinity of the obstacle and free 
surface, depends only on the local geometry. Finally, the radially spreading 
surface wave field is estimated by ray-theory arguments. Explicit details are 
given for the heaving and rolling of a circular dock and for the heaving motion of 
a hemisphere. Some speculations are made regarding the scattering properties 
of such obstacles. 

1. Introduction 
A method of matched expansions has been used in earlier work (Leppington 

1972, 1973) to deal with problems of radiating and scattering of short surface 
waves by two-dimensional obstacles. The aim of this paper is to generalize these 
ideas in order t o  estimate the radiation due to a three-dimensional body that 
undergoes time-periodic oscillations. 

If S denotes the surface of such a body and C is the (convex) curve where S 
intersects the free surface, co-ordinates (x,y,x) are chosen so that the fluid 
occupies the region z > 0, outside S. For time-periodic motions the linearized 
problem for the velocity potential %{$(x) exp ( - iwt )}  is 

q5zz + $,, + = 0 outside S, (1.1) 

&$/an = V onS, (1.2) 

4 + E $ ~  = 0 outside C, z = 0, (1.3) 

where suffixes denote partial differentiation, n is the outward normal from 8, 
7 exp ( - iwt )  is the prescribed normal velocity on S, and E = g/w2 is a wavelength 
parameter. In  addition, we require an outgoing wave condition 

4 N A(h) r-t exp {(ir - z)/e) as r /a  --f 00, (1.4) 

where a is the maximum diameter of C, ( r ,  A, z )  are cylindrical polars and A(h)  
is an amplitude parameter to be found. Our aim is to find an asymptotic approxi- 
mation for $ and particularly for A(A) in the short-wave limit €/a -+ 0. 
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FIGURE 1. The obstacle S meets the free surface z = 0 at the curve C .  The local co-ordinates 
X and Y are related to p and z by the formulae p = EX and z = EY. 

The procedure for finding an asymptotic solution for $ follows closely that of 
parts 1 and 2 of this work (Leppington 1972, 1973). A n  outer approximation Qto 
js specified by taking B = 0 in condition (1.3) to get $o = 0 on the free surface, 
and by requiring $o 3 0 at  infinity. 

For points dose to C, on the other hand, the proper surface condition (1.3) 
must be applied, but the solution is assumed to depend only on the local geometry 
of A, thus suggesting a rescaling of co-ordinates with respect to wavelength. 
Specifically, if s denotes arc length along C measured from some arbitrary 
starting-point, and p denotes the shortest distance from vertical generators 
through C, we define new local co-ordinates X and Y by the relations 

to determine the local field near the point s (see figure I). 
This leads to a two-dimensional problem for the potential Q, N a(€)  (Do near s. 

The specifications for the outer and inner approximations are completed by 
requiring them to  match in their common region of validity. Details are provided 
in $9 2 , 3  and 4for some special casesin which Cisa circle, when the approximating 
potentials $o and (Do can be calculated explicitly. 

In particular, we find the amplitude of the locally two-dimensional waves, 

p = EX, x = S Y ,  $(x) = Q,( s ;X ,  Y )  (1.5) 

a@, N Ao(s; e)  exp (iX - Y )  as X = p/e  -+ 00, (1.6) 

that are formed, together with wave-free terms, near the point s. The amplitude 
parameter A ,  can be calculated, in principle, to any order of accuracy and is 
a slowly varying function of arc length s, for the radiation problems discussed 
here. 

Now in the corresponding two-dimensional problems, the wave train (1.6) 
was simply extended from the inner region to the whole of the remaining free 
surface. For the three-dimensional geometries envisaged here, we have the 
additional task of calculating the way in which the locally two-dimensional waves 
(1.6), in the inner region, change into the radially spreading waves (1.4). 

It is now proposed that this problem can be handled by standard ray-theory 
arguments. For if we use $, to denote the surface wave part of the potential, 
to the order of approximation contained in the estimate (1.6), then formulae (1.6) 
and (1.4) require that 

Ao(s; 4 exp ((ip - x)/e) ( E  < p < a), (1-7) 

Ar-&exp{(ir-x)/e} ( r  a a). (1.8) 
$ w N  { 
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Although (1.7) is valid at the outer extremity of the inner region, the djstancep 
is very small compared with the obstacle dimension a, so that in terms of the 
outer co-ordinates ( r ,  z )  formula (1.7) serves as a boundary condition on C. Now 
each of the two expressions (1.7) and (1.8) contain the same z dependence, and 
this suggests that we write 

& = F(%, y; 6 )  exp ( - z / 4 ,  (1.9) 

which ensures that cjW satisfies the free-surface condition (1.3) identically. The 
problem for F is therefore 

(1.10) 1 Fxx + Fyy + e2F = 0 

F = A,($;€) on C, 

F N Ar-*exp(ir/s) as r+m, 

outside C, 

which is a familiar radiation problem in acoustics and electromagnetic wave 
theory. I ts  asymptotic solution is found by the ray-theory method (Keller, 
Lewis & Seckler 1956)) which is to write 

(1.11) 

substitute into (1.10) and equate equal powers of e. Retaining only the leading 
term of the solution, we find that 

F N (1 +p/R)-% A,(s; E )  exp ( ip/c)  as e + 0, (1.12) 

where R = R(s)  is the local radius of curvature a t  s, which is the point of C closest 
to  the field point. Higher order terms can be written down to any order of 
accuracy, if required. 

I n  the particular problems studied in $8 2, 3 and 4, C is a circle of unit radius, 
s o t h a t R =  l a n d p = r - 1 ; t h u s  

& N A,(s) r-* exp { i (r  - I)/€ - +}. (1.13) 

To the first order of approximation then, the distant radial field (1.4) is given 
from the local inner field (1.6) by simply multiplying by d. (I am grateful to 
a referee for pointing out this fact, which has led t o  the more general treatment 
given here.) If the inner wave field (1.6) were calculated to higher order, to give 
a more accurate estimate for A,(s), then the higher order terms of expansion (1.11) 
would have to be included to the same order of accuracy. 

Sections 2 and 3 contain details of the solution of the problem of a circular dock 
that undergoes a heaving or rolling motion, and the analysis for the problem of 
a heaving hemisphere is given in 3 4. 

Numerical results have been obtained for these problems by MacCamy (1961) 
and by Kim (1963a, b ) ,  these being essentially long-wave computations with B 

ranging from 00 to a. A comparison for the smallest value B = 3 shows that the 
asymptotic estimates (2.22), (3.9) and (4.23) below for the amplitude constants 
are in error by about 50 yo. Since this value of E corresponds to waves of length 
1; times the radius, it is not small enough for short-wave asymptotics to be 
accurate. 
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2. Radiation by a heaving circular dock 
A circular dock of unit radius and zero thickness lies on the otherwise-free 

surface of a fluid of great depth, and undergoes a small amplitude heaving motion 
that is simple harmonic in time. Cylindrical polar co-ordinates ( r ,  A, z )  are chosen 
so that the dock occupies the region r < 1, z = 0, with fluid in the half-space 
z > 0. The velocity potential is independent of h and has the form .%‘{$(r,x)e-~~~},  
where w is the angular frequency; the time factor e-iwt will henceforth be 
suppressed. 

For small vibrations, with prescribed downward velocity 9{V, e-iwt) for the 
dock, the potential q5 is specified by the linearized boundary-value problem 

q5rr + r-’$v + q5zz = 0 (2  > 01, (2.1) 

with q5z = V, ( x  = 0, r < l), (2.2) 

and $ h + E $ ,  = 0 (2 = O,r > 1). (2.3) 

Here V, is a constant, and E = g/w2 is 1/2n times the ratio of wavelength to dock 
radius. There is also an edge condition 

l V q 5 / = 0 ( # )  forsome k > - 1  as 6+0 ,  (2.4) 

where 6 is the distance from the edge of the dock. Finally an outgoing wave 
condition is imposed, thus 

q5 N Ar-Bexp{(ir-z)/e) as Y + 00, ( 2 . 5 )  

where A is to be found in the limit of small e. 
The procedure for finding an asymptotic estimate for q5 throughout most of the 

fluid region is very similar to that described in parts I and 2 for the related 
two-dimensional problem. An ‘outer ’ approximation q5,, presumed valid at  
distances of many wavelengths from the free surface, is specified by formally 
setting e = 0 in the boundary condition (2.3). By adding a wave train of the form 
(1.13), with A ,  suitably chosen, this outer approximation has its region of 
validity extended to cover all points at distance 9 E from the rim r = 1, x = 0. 

A different approximation is posed for points that are near, on the dock-radius 
scale, to the edge. For in this vicinity the potential must satisfy the correct 
boundary condition (2.3), but will be aware only of the local geometry. This 
suggests resealing co-ordinates with respect to wavelength, and leads to an 
‘inner’ potential problem that involves a dock of semi-infinite extent. The re- 
scaling and the formal procedure, due to Van Dyke (1964, ch. 4,5), for matching 
the two difYerent approximations in their common region of validity are described 
in detail below. 

Outer approximation 

Dealing f i s t  with the ‘outer’ approximation $,, we have to solve Laplace’s 
equation, with boundary conditions on z = 0 

= V, ( r  < I), $, = 0 ( r  > 1). (2.6) 
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Y + 
FIGURE 2. The cylindrical polar co-ordinates (T ,  A ,  z )  and the local co-ordinates ( X ,  Y )  
and (a,@. The inner and outer variables R and 6 are related by the formula S = ER, 
and C is the curve where the obstacle intersects the fluid. 

Such an axisymmetric potential problem is readily handled by the methods 
described by Sneddon (1966, ch. 4), and one can verify that a solution is given by 

where Jo denotes a Bessel function. The solution (2.7) is the one that satisfies the 
edge condition (2.4). Since the edge ( r  = 1, z = 0) lies outside the region of validity 
of q50 we are not entitled to assume, without further justification, that such an 
edge condition must hold there, and could add any eigensolution of the problem. 
As in the two-dimensional case, such eigenfunctions behave like 6-4, or worse, 
near an edge and are rejected on the grounds that they cannot be matched 
with any inner solution. 

I n  order to examine the form of the ‘inner’ solution near the rim, we need to 
determine the behaviour of $o near r = 1, z = 0. It is convenient to calculate first 
the value of q50 on the dock, with z = 0 and r < 1. A partial integration of the 
integral (2.7) shows that 

= - (2&/n) (1 -r2)3, when T < 1, (2.8) 

according to Watson (1944, p. 405). I n  particular, for points a t  a small distance 6 
from the edge, we set r = 1 - 6 and expand for small S to get 

$h0 N - (2%/n) ( 2 W  - 2-1s* + . . . ). (2.9) 
More generally, the nature of the solution at all points within a neighbourhood of 
the edge is found from (2.9) together with (2.1) and (2.6) to have the form 

(2.10) $o N - (2V,/n) (2Wsin 46- inssin e) + O(S%), 

in the local co-ordinate system (6,B) of figure 2. 

Inner approximation 

Formula (2.10) leads the way to our investigation of the potential near the edge, 
where 40 is not valid. I n  such a region, well within a dock radius from the edge, 
the potential is expected to vary on a wavelength scale; thus we change variables 
according to the transformation 

r = 1 +EX, 2 = EY, #(r,  2) = qx, Y ) .  (2.11) 
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In  the terms of the 'inner' variables ( X ,  Y), with R = ( X 2 +  Y2)fr, the leading 
term of the expansion (2.10) takes the form 

4, N - (V,/n-) 2&4R* sin $0, (2.12) 

4 e*@,(X, Y) (2.13) 

in the edge region. On substituting into the governing equations (2.1)-(2.5) and 
taking the limit E -+ 0 it is found that @,(X, Y )  is the harmonic function that 
satisfies the surface condition 

<Do+ Q'oy = 0, (2.14) 

together with an edge condition at  ( X ,  Y) = (0,O) and the matching condition 
(from (2.12)) that 

<Do N - (V,/T) 2QRS sin $0 as R --f co, (2.15) 

which suggests that 

plus a regular wave train. 
Apart from a proportionality constant, this potential is the same as the one 

that occurs in the corresponding two-dimensional problem (see part l), and has 
the solution given by Holford (1964) as 

where 

@ =  
( t c o s t Y - ~ i n t Y ) e - ~ ~  dt 

( X  > 0): s--2 (t + i) A(t) t - s  
- 

(2.16) 

(2.17) 

( X  < 0). 
A(s) 1 R(t) cos t Y etx dt - n--1- 
s - i  0 t(t-i) t+s 

The crossed integral sign denotes a Cauchy principal value, and A is defined as 

(2.18) 

The behaviour of a0 for large positive values of X can be deduced from (2.16) 
and (2.17), and is found (see part 1) to be 

<Do + (V,/n) 2%R* sin 40 N - 2in-*V, e-*irr eix-y. (2.19) 

Wave train ut in$nity 

According to formula (2.19), the inner approximation 4 - e400, which is valid 
for Y- 1 g 1, has the form 

@ N ekDo N - 2i(e/n)B V, e-ini exp { [i(r - I) - x]/e} (2 .20 )  

as (r - I)/€ -+ co, together with a wave-free term. This is restricted to values of r 
such that r - 1 < I, and represents the potential at the outer extremities of the 
inner region, where the outgoing waves are locally two-dimensional. A comparison 
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with the formula (1.13) shows, however, that the outgoing wave train has the 
more general form 

0 N Ar-t exp ( ( i ~  - z)/e} as T + CO, (2.21) 

where A N - Si(a/n)* Gexp ( - &mi - i/e) as E -+ 0, (2.22) 

to ensure consistency with (1.13). Thus the outer approximation is extended, 
to cover all points many wavelengths from the rim, by superimposing #o on 
the wave train (2.21) with (2.22). In  this way, both the wave-free terms and the 
outgoing wave trains are seen to match a t  the common points of the outer and 
inner regions, and the first-order approximation is complete. 

3. Radiation by a rolling circular dock 
An example of a three-dimensional problem which is not axially symmetric 

is that of the rolling circular dock, with theprescribednormal velocity V ( x )  = V,x. 
The analysis is similar to that of $ 2 and will therefore be treated briefly. In terms 
of the cylindrical polara ( r ,  A, z )  the fluid occupies the half-$pace z > 0,  the dock 
is given by T < 1, z = 0, and the normal velocity is V = Krcos A. 

The outer potential $o is now the harmonic function that vanishes at infinity 
a.nd satisfies an edge condition and the boundary conditions 

$o(r,O) = 0 (r > 1); $ o z ( ~ , O )  = Vi~cosA (T < 1). (3.1) 

This is again a problem of the type treated by Sneddon (1966), and has the 
solution 

where Ji denotes a Bessel function. It can be readily verified (from Watson 1944, 
p. 404) that the integral (3.2) satisfies the conditions (3 . i ) ,  and that #o has the 
value 

#@(T, 0) = - (4V,/3n) r( 1 -+)a cos h (T < 1) (3.3) 

on the dock. I n  particular, for points close t o  the rim we have 

$o( 1 - 6 , O )  N - (4V,/3n) 2369 cos h as 6 -+ 0, 
whence 

$o N - (4VJ3n) 2' cos A 64 sin 46 as 6 -+ 0, (3.4) 

in the local co-ordinate system of figure 2 .  

an inner approximation 

with 

On rewriting (3.4) in terms of the inner variable R = 6/e, this formula suggests 

# et@o, (3.5) 

<Do N - (4V,/3n) 24 cos h Rt sin 40 as R --f co. (3.6) 

The potential Q0 is seen to be proportional to the corresponding function that 
occurs in $ 2  for the heaving dock. I n  particular, its far-field form is given by 

<Do N - ~ T , n r - t i c o s h e x p ( - ~ n i + i X -  Y )  as X + m ,  (3.7) 
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together with the wave-free term (3.6). A comparison of this result for the poten- 
tial, Q - e4Qo, with the general form (1.13) requires that 

$ - A,,-gcoshexp{(ir-z)/e} as r -f co, (3.8) 

(3.9) where 

Since the problems of §$2  and 3 are linear, a simple superposition provides the 
solution for the case V ( x )  = V, + xV, of a combined heaving and rolling motion. 
The present method is obviously capable of extension to deal with any prescribed 
velocity V(r ,  A), by writing V as a Fourier series in h and treating each component 
separately. The outer problems are classical mixed boundary-value problems of 
the type treated by Sneddon (1966), and the inner potentials will be proportional 

A ,  - - i(e/n)t $K exp ( - &ri - +). 

to (Do. 

4. Radiation by a heaving hemisphere 
The problem of calculating the short waves radiated by a heaving hemisphere 

can be attacked by a similar analysis. Since this obstacle is locally vertical near 
its intersection with the free surface, the inner potential is found to reduce to 
a problem of waves produced by a plane vertical wave maker. 

Using the cylindrical polars ( r ,h , z )  as before, the hemisphere is given by 
r2+ 22 = 1, and the potential Q(r, x )  exp ( - i w t )  satisfies the linear conditions 

& + r-lgT + #zz = 0 in the fluid, (4.1) 

Q + u # , = O  on z = O , r  > 1, (4-2) 

rQ,+zQ, = v,z 011 r2+22 = 1, (4.3) 

with q5 finite near the circle ( r  = 1, z = 0) where S meets the free surface. The 
outgoing wave condition requires that 

Q - Ar-iexp{(ir-z)/c} as r -+ co. (4.4) 

An outer approximation #o is specified by setting $, = 0 on the free surface, 
in place of condition (4.2), and by requiring $, to vanish at great distances from 
the origin. It is easy to verify that the solution is 

(4.5) 

q50--$yOz as S2=( r - l )2+z2-+0 .  (4.6) 

$ - - -- ;v,z(rz+z2)-% 

I n  particular, the solution near the rim (r = I, z = 0) is given by 

In  terms of the inner co-ordinates 

r = l+€X,  2 = € Y ,  Q(r , z )  = Q ( X ,  Y ) ,  

formula (4.6) can be expressed as 

Q-q30--&V,eY as e+O,  

which suggests an inner approximation 

Q N @(I) = €aO, 
where @,--&y0Y as R2=X2+Y2-+00 

(4.7) 
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(together with outward-travelling waves), in order to ensure a smooth match with 
the outer approximation do. 

Now the boundary-value problem (4.1)-(4.4), written in terms of the local 
co-ordinates (X, Y ) ,  has the form 

@~,+@yp+CDX€/(l+€x) = 0 (X > 0, Y > O ) ,  (4.10) 

@+a)., = 0 (X > 0,  Y = O ) ,  (4.11) 

@x+"{Y@y-~Y2@xx}+.. .  = €2GY+ ... (X = O ) ,  (4.12) 

@-Nexp( iX-Y)  as R-tco, (4.13) 

together with wave-free terms. The derivation of condition (4.12) from (4.3) 
closely follows the corresponding calculation that is discussed in detail in part 2 
of this work. On substituting our first approximation @ - E@,, into these equa- 
tions, it is found that CDo is a harmonic function of X and Y ,  satisfying the 
conditions 

@o+CDop = 0 (X > 0, Y = 0), (Box = 0 ( X  = 0, Y > 0) ,  (4.14) 

and the outward wave requirement (4.13), with (4.9). Its solution is 

CDo = - Qv,( Y - 1), 

and is seen to be wave-free. To estimate the wave train generated towards X = co, 
it is therefore necessary to consider higher order terms in the inner region. The 
form of the boundary condition (4.12) shows a need for a term of order e2 in the 
expansion for CD, though terms of intermediate order cannot be ruled out. Thus 
we write 

CD N @@) = B C D ~ + C I ( E )  @.,+e2CD2 as e .+ 0,  (4.15) 

where the scale function a(€) has to be found and is such that 

e2<cx<s  as s+O. 

On substitution into the governing equations (4.10)-(4.13), it is found that the - 

eigenfunction @., is given by 
= A ( Y - l ) ,  (4.16) 

to satisfy the homogeneous conditions (4.14). Eigenfunctions that are bigger 
than O(R)  at infinity are rejected since they would lead to  contributions to the 
inner potential 0 greater than the leading term in the expansion (4.15); 
equivalently, they could not be matched with the outer approximation # - q50. 

The function a2 of formula (4.15) is required to be harmonic, and is subject to 
the conditions 

@ 2 + ( D 2 y  = 0 (X > 0, Y = O ) ,  (4.17) 

@2x = $v,Y (X = 0 ,  Y > O), (4.18) 

with an outgoing wave requirement at  a. This is a straightforward wave-maker 
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problem whose solution has been given, apart from a proportionality constant, 
in part 2 of this work as 

V;lQ2 = ( 3 1 ~ )  R(sinelogR+ (8-+T) cos8)+$R2sin2e 

- (317~) ( l O g I z +  1) -I- 3G+B( Y - I),  (4.19) 

where 
t cos Y t  - sin Yt 

G = - i e i X - Y - -  e-xtdt. (4.20) 

I n  particular, the wave train associated with iD, is given by 

Q2 N - 3iKexp (iX - Y ) .  (4.21) 

Completion of the second-order estimate (4.15) requires the determination of 
a(€), A and B, by matching with the outer solution through the identity 
$(1,2) = Q@>l), in the notation of parts 1 and 2 .  Since we are interested primarily 
in the radiated waves, the parameters A ,  B and a are of little interest, but it is 
recorded here that a(€) = e210ge. 

It follows from (4.21) and (4.15) that 

- -3i<~2exp(i(r- I ) / E - z / ~ >  ( E  < r -  1 < I), (4.22) 

together with wave-free terms that vanish when r - 1 B 1. In order to deduce 
the far field a t  greater distances, formula (4.22) is simply compared with (1.13) 
to show that the far-field amplitude constant A of formula (4.4) is given to this 
order by 

A N -3i<e2exp(-i/e) as € - t o .  (4.23) 

5. Concluding remarks 
The aim of this paper and parts 1 and 2 has been to provide a plausible method 

for finding the short-wave asymptotic solution for a wide class of surface wave 
problems. The method is not rigorous, since it assumes that the potential field 
has expansions of certain types in different parts of the fluid region, and that the 
governing equations can be solved by formally substituting the assumed ex- 
pansions and equating like terms in the small parameter E .  

The method is very plausible, however, since it leads in principle to expansions, 
in terms of harmonic functions, that satisfy the given boundary conditions to 
any order of accuracy and which smoothly match together where the different 
regions overlap. Furthermore, the results obtained in several two-dimensional 
problems are in full agreement with earlier work, much of which has a rigorous 
basis. 

Finally it is of interest to speculate on the possibility of extending the method 
of this paper to  deal with theproblem of travelling waves scattered by a three- 
dimensional obstacle. In the radiation problems treated in this paper, the 
amplitude parameter A&; E )  (formula (1.6)) that arises from the locally two- 
dimensional wave pattern near C is a slowly varying function of arc length s; 
this implies t h a t P  (problem (1.10)) is amenable to solution byray-theory methods. 
These methods need modification, however, if A ,  varies rapidly with s, as would 



Radiation and scattering of short surface waves. Part 3 157 

be the case for the scattering problem associated with a hemisphere, for example, 
or a similar body that intersects the free surface normally. 

Some speculations regarding the solution to such a problem can be made by 
assuming that the surface wave term & of the potential field can still be 
adequately represented by a function of the form (leg), a t  distances & B from 
the intersection curve C. Thus on the length scale associated with the size of C, 
the wave function cjw = F(x ,  y )  exp ( - x/e) is defined effectively a t  all points 
outside C. Near C the hemisphere is locally plane, so that the local field is that of 
the incident potential q5$, reflected by an oblique vertical wall; thus M 2& 
or g5w M 0 on C, according as the point is on the ‘illuminated’ or ‘shadow’ side 
of X. Now the function P(x,y) satisfies the Helmholtz equation (cf. equation 
(1.10)) and evidently corresponds to the potential of a plane acoustic wave 
scattered by a cylinder of cross-section C. In  particular, this suggests the con- 
jecture that the ratio of scattered amplitude to incident amplitude of the surface 
waves i s  the same as the corresponding ratio of amplitudes in the two-dimensional 
acoustics problem of scattering by a cylinder of cross-section C. 

Such acoustics problems have been investigated by many authors. Extensions, 
due to Keller (1956), of the ray-theory argument predict a direct and reflected 
field in the ‘illuminated’ region, and an exponentially small field in the ‘shadow’ 
region behind C. Since our outer and inner expansions are accurate only up to 
terms that are algebraically small in e, however, the relevance of these exponen- 
tially small shadow fields to the surface wave problem is questionable: the subtle 
interference properties might well be completely changed by small errors in the 
potential on the boundary C ,  and an exponentially small shadow field seems 
unlikely. 

Different scattering problems for P would emerge for different types of obstacle 
8. For the circular dock, for example, the local field near C would require a solu- 
tion for the problem of a wave train obliquely incident upon a semi-infinite dock. 
A treatment for more general geometries requires the exact solution for obliquely 
incident waves on a beach of slope appropriate to the local shape of 8. 

Note added in proof. Related methods are used in recent work by Hermans 
( J .  Engng Naths. 1972 6, 1973 7). The first paper concerns mainly the heaving 
semi-circular cylinder, and the second paper discusses three-dimensional 
problems. 
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